Skip to contents

This function takes raw Meaco sensor data and performs several cleaning and processing steps:

  • Filters out rows with missing dates

  • Renames column names for consistency

  • Converts temperature and relative humidity to numeric

  • Rounds dates down to the nearest hour

  • Calculates hourly averages for temperature and relative humidity

  • Pads the data to ensure hourly intervals using padr package

  • Filters out unrealistic temperature and humidity values (outside -50°C to 50°C and 0 to 100%RH)

Usage

tidy_Meaco(
  mydata,
  Site_col = "RECEIVER",
  Sensor_col = "TRANSMITTER",
  Date_col = "DATE",
  Temp_col = "TEMPERATURE",
  RH_col = "HUMIDITY"
)

Arguments

mydata

A data frame containing raw Meaco sensor data with columns RECEIVER, TRANSMITTER, DATE, TEMPERATURE, and HUMIDITY

Site_col

A string specifying the name of the column in `mydata` that contains location information. Default is "RECEIVER".

Sensor_col

A string specifying the name of the column in `mydata` that contains sensor information. Default is "TRANSMITTER".

Date_col

A string specifying the name of the column in `mydata` that contains date information. Default is "DATE".

Temp_col

A string specifying the name of the column in `mydata` that contains temperature data. Default is "TEMPERATURE".

RH_col

A string specifying the name of the column in `mydata` that contains relative humidity data. Default is "HUMIDITY".

Value

A tidied data frame with columns Site, Sensor, Date, Temp, and RH

Examples


if (FALSE) { # \dontrun{

meaco_data <- read.csv("path/to/your/meaco_data.csv")
meaco_tidy <- tidy_Meaco(meaco_data)

} # }