ConSciR is an R package designed to assist conservators, scientists and engineers by providing a toolkit for performing calculations and streamlining common tasks in cultural heritage conservation.
ConSciR is designed for and to be:
- Conservators working in museums, galleries, and heritage sites
- Conservation scientists, engineers and researchers
- Cultural heritage professionals involved in preventive conservation
- Students and educators in conservation and heritage science programs
- FAIR: Findable, Accessible, Interoperable, and Reusable
- Collaborative: allowing anyone to upload code, raise requests, report bugs, and add functionality to the package
If using R for the first time, read an article here: Using R for the first time
Tools
- Humidity calculations, conservator tools, sustainability
- Mould growth models, damage functions
- Graphs: TRH plots, psychometric chart
- Tidying data: Meaco, Hanwell data
- Interactive Shiny applications
Installation
You can install the development version of ConSciR from GitHub with:
install.packages("pak")
pak::pak("BhavShah01/ConSciR")
-or-
# install.packages("devtools")
devtools::install_github("BhavShah01/ConSciR")
Examples
This is a basic example of some commons tasks:
- Load packages
- Pre-loaded dataset is availabe for testing
# My TRH data
head(mydata)
#> # A tibble: 6 × 5
#> Site Sensor Date Temp RH
#> <chr> <chr> <dttm> <dbl> <dbl>
#> 1 London Room 1 2024-01-01 00:00:00 21.8 36.8
#> 2 London Room 1 2024-01-01 00:15:00 21.8 36.7
#> 3 London Room 1 2024-01-01 00:29:59 21.8 36.6
#> 4 London Room 1 2024-01-01 00:44:59 21.7 36.6
#> 5 London Room 1 2024-01-01 00:59:59 21.7 36.5
#> 6 London Room 1 2024-01-01 01:14:59 21.7 36.2
- Use functions, for example use the existing data to add dew point and absolute humidity. Performance metrics are also being added like lifetime multiplier, preservation index and mould calculations.
# Peform calculations
head(mydata) |>
mutate(
DewP = calcDP(Temp, RH),
Abs = calcAH(Temp, RH),
LifeTime = calcLM(Temp, RH, EA = 100),
PI = calcPI(Temp, RH)
)
#> # A tibble: 6 × 9
#> Site Sensor Date Temp RH DewP Abs LifeTime PI
#> <chr> <chr> <dttm> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 London Room 1 2024-01-01 00:00:00 21.8 36.8 6.38 7.05 1.11 45.3
#> 2 London Room 1 2024-01-01 00:15:00 21.8 36.7 6.34 7.03 1.11 45.4
#> 3 London Room 1 2024-01-01 00:29:59 21.8 36.6 6.30 7.01 1.11 45.5
#> 4 London Room 1 2024-01-01 00:44:59 21.7 36.6 6.22 6.97 1.11 46.1
#> 5 London Room 1 2024-01-01 00:59:59 21.7 36.5 6.18 6.95 1.11 46.2
#> 6 London Room 1 2024-01-01 01:14:59 21.7 36.2 6.06 6.90 1.11 46.6
- Combine analysis with graphs
mydata |>
mutate(DewPoint = calcDP(Temp, RH)) |>
graph_TRH() +
geom_line(aes(Date, DewPoint), col = "purple") + # add dewpoint line in purple
theme_minimal()
- Conservator tools: for example estimate mould growth
mydata |>
mutate(Mould = calcMould_Zeng(Temp, RH)) |>
ggplot() +
geom_line(aes(Date, RH), col = "blue") +
geom_line(aes(Date, Mould), col = "darkgreen", size = 1) +
labs(title = "Mould Growth Rate Limits",
y = "Humidity (blue) and Mould Limit (green)") +
theme_bw()
- Humidity functions: for example psychrometric chart
mydata |>
graph_psychrometric()